Source code for tasks.affect.base
"""
Affect - Base
"""
import os
from typing import List
import pandas as pd
import requests
from scipy.stats import linregress
from tasks.task import BaseTask
[docs]
class Affect(BaseTask):
"""
**Description:**
This class is the base affect class for common methods and analysis.
"""
def _get_data(
self,
local_dir: str,
file_name: str,
start_date: str,
end_date: str = "",
usecols: List[str] = None,
date_column: str = "date",
) -> pd.DataFrame:
local_dir = os.path.join(os.getcwd(), local_dir)
if usecols is None:
try:
df = pd.read_csv(os.path.join(local_dir, file_name))
except FileNotFoundError:
return pd.DataFrame()
else:
try:
df = pd.read_csv(
os.path.join(local_dir, file_name),
usecols=usecols,
)
df = df[usecols]
except FileNotFoundError:
return pd.DataFrame(columns=usecols)
# Convert the "date" column to a datetime object with the format "YYYY-MM-DD"
if date_column == "date":
df[date_column] = pd.to_datetime(
df[date_column], format="%Y-%m-%d"
)
else:
df[date_column] = pd.to_datetime(
df[date_column], unit="ms"
)
if end_date or end_date == start_date:
# Filter the DataFrame to get the rows for the input dates (multiple dates)
selected_rows = df[
(
df[date_column]
>= pd.to_datetime(start_date, format="%Y-%m-%d")
)
& (
df[date_column]
<= pd.to_datetime(end_date, format="%Y-%m-%d")
+ pd.Timedelta(days=1)
)
]
else:
# Filter the DataFrame to get the rows for the input date (single dates)
selected_rows = df[
(
df[date_column]
== pd.to_datetime(start_date, format="%Y-%m-%d")
)
]
# Check if the input date exists in the DataFrame
if selected_rows.empty:
print(
f"No data found between the date {start_date} and {end_date}."
)
return selected_rows
def _download_data(
self,
local_dir: str = "data/affect",
download_url: str = "https://www.example.com",
file_name: str = "sleep.csv",
) -> str:
local_dir = os.path.join(os.getcwd(), local_dir)
# Create new directory if it is not there
if not os.path.isdir(local_dir):
os.makedirs(local_dir)
# Get the data from the provided link
response = requests.get(download_url, timeout=120)
if response.status_code == 200:
with open(
os.path.join(local_dir, file_name), "wb"
) as file:
file.write(response.content)
return f"Downloaded {file_name} to {local_dir}."
else:
return (
f"Failed to download {file_name} from {download_url}."
)
def _convert_seconds_to_minutes(
self, df: pd.DataFrame, column_names: List[str]
) -> pd.DataFrame:
for column_name in column_names:
if column_name in df.columns:
df[column_name] = df[column_name] / 60
return df
def _dataframe_to_string_output(self, df: pd.DataFrame) -> str:
# Create a formatted string for each column and its corresponding value
formatted_values = [
f"{col} = {val}" for col, val in df.items()
]
# Join the formatted values into a single string using a comma and space
result_string = ", ".join(formatted_values)
return result_string
def _string_output_to_dataframe(
self, input_string: str
) -> pd.DataFrame:
# Split the input string into individual column-value pairs
column_value_pairs = [
pair.strip() for pair in input_string.split(",")
]
# Create a dictionary to store column-value pairs
data_dict = {}
# Iterate through the pairs and extract column and value
for pair in column_value_pairs:
print("pair", pair)
# Split each pair into column and value
column, value = pair.split("=")
# Strip any leading or trailing whitespaces
column = column.strip()
value = value.strip()
# Add the column-value pair to the dictionary
data_dict[column] = [value]
# Create a DataFrame from the dictionary
return pd.DataFrame(data_dict)
def _calculate_slope(self, df: pd.DataFrame) -> pd.DataFrame:
# Create a new DataFrame to store the slopes
df_out = pd.DataFrame()
# Iterate over columns
columns_list = [
col for col in df.columns if "date" not in col.lower()
]
for column in columns_list:
# Get the x values (dates) and y values (column values)
# Convert date to numeric days
x = pd.to_numeric(
(df["date"] - df["date"].min())
/ pd.to_timedelta(1, unit="D")
)
y = df[column]
# Calculate linear regression parameters
slope, intercept, r_value, p_value, std_err = linregress(
x, y
)
# Add the slope to the result DataFrame
df_out[column] = [slope]
return df_out